8T14 TRIPLE LINE RECEIVER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The 8T14 Triple Line Receiver is designed to receive digital information from coaxial cable, strip line, or twisted pair single ended transmission lines. High input impedance (\approx 30k Ω) presents minimal loading to the transmission lines in multiple receiver applications. The 8T14 has built in hysteresis which makes it ideal for such applications as Schmitt triggers, one-shots, and oscillators. Use the 8T24 triple line receiver where IBM System/360 I/O Interface Specification must be met.

- **BUILT-IN INPUT THRESHOLD HYSTERESIS**
- HIGH SPEED
- INDEPENDENT CHANNEL STROBING
- **FANOUT OF 10 TTL LOADS**
- SINGLE +5V SUPPLY OPERATION

ABSOLUTE MAXIMUM RATINGS Input Voltage (Note 1)

Output Voltage (Note 1) Supply Voltage (Note 1) Storage Temperature Range Hermetic DIP (S8T14E, N8T14E)

Molded DIP (N8T14B)

Operating Temperature Range Military (S8T14)

Commercial (N8T14)

Lead Temperatures

Hermetic DIP (soldering, 60 seconds) Molded DIP (soldering, 10 seconds) Internal Power Dissipation (Note 2)

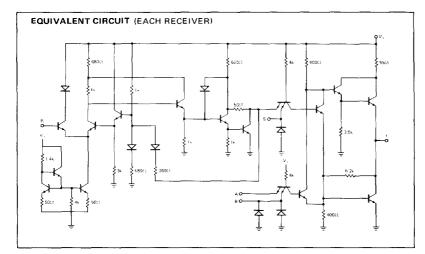
300°C 260°C 730 mW

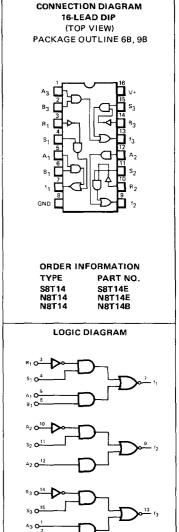
+5.5V

+7.0V

+7.0V

-65°C to +150°C


-55°C to +125°C


-55°C to +125°C

0°C to +75°C

NOTES

- 1. Voltages are with respect to the ground pin (pin 8). 2. Rating applies to ambient temperatures up to 70° C. Above 70° C derate linearly at 8.3mW/ $^{\circ}$ C.

FAIRCHILD LINEAR INTEGRATED CIRCUIT ● 8T14

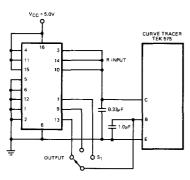
ELECTRICAL CHARACTERISTICS (V₊ = 5.0 V \pm 5%; -55° C \leq T_{Δ} \leq +125 $^{\circ}$ C For S8T14 (Note 3)

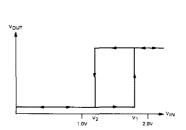
PARAMETER			T	EST CON	SNOITIC]		
		R	S	А	В	OUTPUTS	NOTES	MIN.	TYP.	MAX.	UNITS
Output HIGH Voltage		2.0V	4.5V	0∨	0∨	–800μA	10,16	2.6	3.5		V
		0V	0.8V	0V	ov	−800µA	10,16	2.6	3.5		V
Output LOW Voltage		0.8V	2.0V	0V	ov	16mA	11,15			0,4	V
		0V	0V	2.0V	2.0V	16mA	11,15			0,4	V
Input LOW Current	Sn	ov	0.4V					-0.1		-1.6	mA
	An	οv		0.4V				-0.1		-1.6	mA
	B _n				0.4V			-0.1		-1.6	mA
Input HIGH Current	Rn	3.8V								0.17	mA
	Sn	3.8V	4.5V							40	μΑ
	An			4.5V	ov					40	μΑ
	B _n			0V	4.5V					40	μА
Hysteresis			4.5V	ov	ov		13,14	0.30	0.50		V

NOTE

3. Specifications apply from 0° C to + 75° C for N8T14.

ELECTRICAL CHARACTERISTICS (TA = 25°C, V+ = 5.0V)


			T			UNITS					
PARAMETER	R	S	Α	В	OUTPUTS	NOTES	MIN.	TYP.	MAX.		
Turn-on Propagation De	VIN	5.0V	٥٧	0∨		18		20	30	ns	
Turn-off Propagation De	VIN	5.0V	0∨	0∨		18		20	30	ns	
Power/Current Consumption									315/60	380/72	mW/mA
	S _n	3.8V	10mA	0V	0∨			5.5			v
Input Voltage Rating	An	0٧	0∨	10mA	0V			5.5			V
	Bn	0V	ΟV	0V	10mA			5.5			V
Output Short-Circuit Current		3.8V	0∨	0V	0∨	0V		-50		100	mA
	Sn		-12mA							-1.5	v
Input Clamp Voltage	An			12mA						-1.5	V
	Bn				-12mA					-1.5	V


NOTES

- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
- All measurements are taken with ground pin tied to zero volts.
- Positive current is defined as into the terminal referenced. 6.
- Positive current flow is defined as into the terminal referenced, Positive Logic Definition: "UP" Level = "HIGH"; "DOWN" Level = "LOW". 8.
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the clamp diodes on the S, A, and B inputs become forward biased.
- 10. Output source current is supplied through a resistor to ground.
- 11.
- Output sink current is supplied through a resistor to V_{CC} . This test guarantees operation free of input latch-up over the specified operating supply voltage range. 12.
- 13. Hysteresis is defined as voltage difference between R input level at which output begins to go from LOW to HIGH state and level at which output begins to go from HIGH to LOW.
- 14. $V_{+} = 5.0V.$
- 15. Previous condition is a HIGH output state.
- 16. Previous condition is a LOW output state.
- 17. $V_{+} = 5.25V.$
- 18. Measured as time delay from R input going through 1.5V to the output going through 1.5V. (See 8T24 data sheet ac test circuit).

FAIRCHILD LINEAR INTEGRATED CIRCUIT • 8T14

HYSTERESIS TEST CIRCUIT

Verify in each of three (3) positions of S₁ (Fig. 1) that the following occurs per Fig. 2.

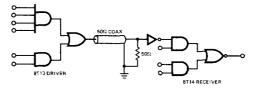
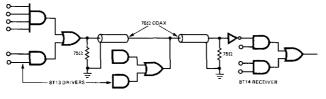
1. V_1 and V_2 must be between 0.8V minimum and 2.0V maximum.

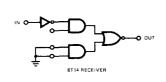
2. Hysteresis = $V_1 - V_2 \ge 0.3V$.

Fig. 1

Fig. 2

APPLICATIONS


Fig. 3

If more than one driver/receiver pair is to be used on each transmission line, the line should be terminated at both ends as shown in Fig. 4

Fig. 4

SCHMITT TRIGGER APPLICATION

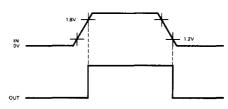


Fig. 5